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1 Introduction

Molflow, dating back to the 1990s, is a Monte Carlo simulator intended to calculate pressure profiles and
conductances in ultra-high vacuum. It uses the test particle Monte Carlo method where as introduced
above - a limited number of virtual, test particles represent a larger amount of physical molecules and
the derived quantities of the test particles are scaled up to match the physical numbers.

In Molflow the geometry is described by polygons called facets. All facets have user-defined physical
properties (temperature, opacity, sticking, etc.). To perform a vacuum simulation, we insert molecules
in the system and trace them until they are pumped. In between, collisions with the wall (referred to as
hits) are registered, and where necessary, stored in memory. We do not account for collisions between
molecules as the mean free path of molecules in the accelerator pressure ranges is shown before to be
above the characteristic length of the vacuum chambers.

This is in contrast with direct simulation Monte Carlo (DSMC) methods, where the vacuum chamber
volume is divided into 3D cells, and a set of virtual particles is kept in memory and their positions are
evolved as time advances.

Historically the DSMC method [2] supersedes the TPMC, and is generally considered more advanced
as treatment of inter-molecular collisions allows simulating pressures in the viscous regime (where the
Knudsen number is below 1). However, in particle accelerator applications, where pressures are, with
few exceptions, well within the free molecular flow regime, I argue that TPMC methods are still a good
choice because of the following advantages:

• As intermolecular collisions are omitted, only one test particle has to be kept in memory. Its
trajectory, assumed to be straight between the chamber walls, can be determined by ray tracing,
from the point of insertion (outgassing point) to the pump location. This is in contrast with DSMC
methods where each 3D cell has to store a statistically significant number of particles, increasing
the memory requirement substantially.

• The TPMC method allows simulations to be event-driven: Molflow+ first looks for collisions with
the walls, and once they happen, based on the position and the particle velocity, it calculates
the time of the hits. This is in contrast with time-driven simulations, where time is advanced
periodically by a given step and the new molecule locations are iterated, checking at each step if
the new position is within the chambers volume. The problem with that method is that the time
step must be scaled to the smallest feature in the system, therefore in case of a straight flight path
between two walls, possibly hundreds of time steps are required in time-driven algorithms vs. only
one in event-driven ones.

• Since test particles are independent, the vacuum systems behavior is linear: the algorithm is
particularly suitable for parallelization: in Molflows case each CPU core traces one test particle,
and hits are summed when results are evaluated. For larger parallelization (cluster, GPU), only
the geometry with the physical properties have to be passed for each thread, and simulation state
synchronization, usually a bottleneck on GPUs, is not necessary.

• While 3D meshing is straightforward in simple geometries, for complex ones (grids, screws, probes,
RF fingers) it becomes more error-prone (see Fig.2): small geometry details can increase the number
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Figure 1: Complex geometry and its Molflow+ equivalent

of cells used, and the mesh size, if not chosen correctly, can introduce non-converging solutions. In
TMPC simulations only surfaces are described, imported from CAD programs in the STL format.

Due to the lower memory requirement and the faster algorithm explained above, most vacuum cham-
bers can be simulated with the TPMC method on an average desktop computer. As an example of a
complex geometry, the tank with electrodes and correctors in Fig.1 can be described by 37.000 facets and
a pressure solution with acceptably low statistical scattering is reached within an hour (corresponding
to 20 million hits) in Molflow+. Volumetric meshing of the geometry can take over a day and the conse-
quent DSMC simulation of the system can typically be achieved only with high-performance computation
clusters due to the large memory and computational requirement.

The original Molflow code developed outside of this PhD project calculated results as numbers of
Monte Carlo hits which could be converted into pressures or density in case of a steady-state simu-
lation where the whole system was isothermal. Based on the ray-tracing engine and the custom GUI
framework1, I have extended the algorithm to include the distribution of the molecule velocities (so
pressure can be calculated in non-equilibrium scenarios), and once this is achieved, make simulations
time-dependent. This new code is presented below.

2 Steady-state simulations

First Molflow’s steady-state algorithm is presented: in this case, there is a continuous influx of gas
particles to the system, with constant pumping speeds, and our goal is to determine the (constant)
pressure, density and other physical quantities on the facets. It is worth mentioning that unless the user
explicitly defines time-dependent parameters, this steady-state algorithm is used. The algorithms main
steps, with an overview on Fig.3, are identical to almost all TPMC vacuum calculators. Details for each
step are explained below.

2.1 Particle generation

In the steady-state case the outgassing rate Q = d(pV )/dt is constant. Gas may come from the walls
through thermal desorption, or from injection points. In both cases the source points will be represented
by facets where for each facet f the user defines the outgassing Qf . From this quantity, the influx rate
of physical particles, dNf,real/dt can be calculated: using the ideal gas equation:

pV = NrealkBT (1a)

dNf,real
dt

=
pV

dt

1

kBTf
=

Qf
kBTf

, (1b)

1Programmed by of J.L.Pons, ESRF in 2007
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Figure 2: 3D tetrahedral meshing failures with Autodesk Inventor 2016 a 3D mesh can take days to
generate and the memory requirement is well outside the capability of current desktop PCs

where Tf is the temperature of the gas source that facet f represents. 2

For each generated virtual particle, Molflow+ chooses a starting location. The probability of choosing
a certain facet as source is proportional to the local flux dNreal/dt of molecules on the facet, derived
above. Once the source facet is decided, the start position of the test particle is chosen randomly with
uniform distribution on its surface.

The total number of particles entering the system every second,
∑ dNreal

dt is the sum of the particle
fluxes on the source facets. Even for a low outgassing rate, for example 1× 10−8 mbar l/s, it is in the
order of 1× 1012 particles/second, and our computing power is insufficient to simulate all of them. This
is why we represent a large number of real particles with a smaller number of virtual (test) particles. In
this case, if we generate a total Nvirtual test particles, each one will represent a number of real particles

2For clarity, I would emphasize that in the steady-state mode a test particle doesn’t represent an absolute number of
physical molecules, but instead as the system is in equilibrium a certain influx or rate of particles (incoming particles per
second). Consequently, a virtual hit on the wall will represent a certain number of real hits per second, contributing to the
(constant) pressure.

Generate new 
particle

Choose particle 
direction

Choose particle 
speed

Find next collision 
location

Particle 
pumped?

Register hit and 
bounce

Yes

No

Figure 3: Main steps of Molflow’s algorithm
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dF~Cos5ѲdF=Const.dF~CosѲ
Pressure, arbitrary units

Figure 4: Pressure profiles in a cube with uniform desorption, based on the directional distribution of
emitted and reflected particles

per second equal to:

K real
virtual

=

∑
dNreal/dt

Nvirtual

2.2 Choosing particle direction

For particle generation and surface rebounds, Knudsens cosine law is applied, which states [3] that the
probability ds that a molecule leaves a surface in solid angle dω is

ds = dωπ · cos θ

where θ is the angle between the particles direction vector and the surface normal3.
Using results from [5], the φ azimuth and θ angles can be generated as follows:

φ = rnd · 2π

θ = sin−1
√
rnd

where rnd is a pseudo-random number generated uniformly between 0 and 1. We generate these
random numbers using the Mersenne-Twister algorithm[6].

2.3 Choosing particle speed

For simplicity, several Monte Carlo vacuum simulator implementations calculate either with the average
molecule speed [7], or a constant speed that remains the same through the collisions [8]. In a real system
the speed distribution of molecules in a given volume of ideal gas at equilibrium is described by the
Maxwell-Boltzmann distribution[9], and after each collision the particle spends a certain sojourn time
on the wall during which it thermalizes hence obtaining a new speed. Implementing this accurately can
simulate effects where after a gas injection some faster particles can arrive to distant locations faster
than that predicted by the average gas speed. To include these effects, I choose therefore a new molecule
speed at every collision, as it happens in a real vacuum system.

In my event-driven algorithm, test particles aren’t generated volume-wise, but - as explained above -
representing the flux of incoming particles during a given time through source facets. This is important
as the speed distribution is different in the latter case: fast molecules of the gas cross or hit a surface
more frequently than slow ones.

3If we have Monte Carlo tools available, Knudsen’s cosine law can be ”proven” by a simple thought experiment. If we
have a cube with uniform desorption and uniform sticking on all sides, we expect its pressure to be uniform at every point.
In Fig.4 I model three cubes, one with cosine desorption obeying Knudsen’s law, an other one with ”uniform” desorption,
meaning that each outgoing direction is chosen with equal probability, and one with a ”collimated” desorption, where
the probability of choosing a direction is proportional to cos5(θ), therefore preferring directions close to the facets normal
vector.

On the pressure values, visualized by textures, we can see that any deviation from the cosine law results in particles
tending to get stuck in corners or on the contrary, tending to avoid them. Only a random walk following the cosine law
will result in uniform pressure regardless of the geometry shape.

For a more formal proof that the cosine distribution must be chosen see [4]
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If the probability density function (p.d.f.) of molecular speeds in a volume is f(v)gas, then it is
possible4to calculate the p.d.f. of molecules colliding with a wall during a period of time, f(v)coll:

f(v)coll = v3 exp

(
− v2

2a2

)
1

2a4
(2)

where

a =

√
kBT

m

Now that we have the speed distribution of molecules crossing or colliding on a facet, we can generate
molecules according to it by the numerical inversion method [10]: we calculate the cumulative distribution
function (C.D.F) for the speed distribution, which will assign for every given speed v a probability
(between 0 and 1) that a particles velocity is lower than v. Then we generate pseudo-random numbers
uniformly between 0 and 1 (using again the Mersenne-Twister algorithm), then interpolate in the C.D.F.
the speed v corresponding to the generated probability. For this, the C.D.F for our modified speed
distribution must be calculated, which - unlike for the Maxwell Boltzmann distribution - can be expressed
in closed form:

F (v)coll =

∫ v

−∞
f(v′)colldv

′ = 1− exp

(
− v2

2a2

)[
1 +

v2

2a2

]
For speedup of the simulation, at the beginning, this C.D.F. functions values are calculated for 100

equidistant speed values between 0 and 4·vmost probable = 4·
√

2RT
Mkg/mole

for every facet temperature present

in the system (this interval contains most of the distribution), and the algorithm - instead of interpreting
the analytic expression at each collision - performs an inverse lookup: by reverse interpolation it looks
up the speed that belongs to a generated random number.

An additional speedup could be achieved by calculating the inverse of the C.D.F. and doing forward
interpolation (interpolate the Y value at a known X value) instead of reverse, but due to the long tail,
i.e. non-zero probability for high speeds in the Maxwell-Boltzmann distribution this would introduce
sampling artifacts at high speeds.

A summary of the Maxwell-Boltzmann and the modified speed distributions are presented in Table
1, and the two p.d.f. functions are shown in Fig.8.

2.4 Finding next collision location

Once the particles direction and velocity are calculated, Molflow+ uses a ray-tracing algorithm [11] to
find the next collision point with a facet. Then, depending on the sticking coefficient (see below) of the
hit facet, the particle is either pumped and the algorithm proceeds to generate the next particle from
source, or it rebounds from the facet:

4We start from the fact that fast particles will collide more often, or more precisely, the collision frequency will scale
linearly with the particle speed v:

f(v)coll = f(v)gas · v · C (3)

where C is a normalizing factor, that can be obtained since the integral of the collision p.d.f. must by definition be 1:∫ ∞
0

f(v)coll · dv = 1∫ ∞
0

f(v)gas · v · C · dv = 1

C ·
∫ ∞
0

f(v)gas · v · dv = 1

C · 〈v〉gas = 1

C =
1

〈v〉gas
(4)

where 〈v〉gas is the average molecule speed in the gas. In case of the Maxwell-Boltzmann distribution, 〈v〉gas =
√

8RT
πm

with T the gas temperature, R the ideal gas constant and m the molar mass (in kg). Assuming that we have a gas with
Maxwell-Boltzmann distribution, where the speed p.d.f is known[9]:

f(v)gas(M.B.) = v2 exp

(
−
v2

2a2

)
1

a3

√
2

π

and substituting the value of the normalizing factor, we can express f(v)coll, as eq.2 in the main text.
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Table 1: The Maxwell-Boltzmann and the modified speed distribution

Maxwell-Boltzmann Surface collisions

P.D.F. f(v)gas = v2 exp
(
− v2

2a2

)
1
a3

√
2
π f(v)coll = v3 exp

(
− v2

2a2

)
1

2a4

a =
√

kBT
m[kg/particle]

=
√

RT
M[kg/mole]

C.D.F. CDFgas = erf( x√
2a

)−
√

2
π

x·exp(−x
2

2a2
)

a CDFcoll = − exp(−x
2

2a2 )[1 + −x2

2a2 ] + 1

avg. < v>gas =
∞∫
0

v · f(v)gasdv =
√

8
πa < v>coll =

∞∫
0

v · f(v)colldv = 3
√

π
8 a

speed < v>gas,300K,28g/mole = 476.2m/s < v>coll,300K,28g/mole = 561m/s

< 1
v > < 1

v>gas =
∞∫
0

1
v · f(v)gasdv =

√
2
π

a < 1
v>coll =

∞∫
0

1
v · f(v)colldv =

√
π
8

a

< 1
v>gas,300K,28g/mole = 0.0027 = 1

374m/s < 1
v>coll,300K,28g/mole = 0.0021 = 1

476.2m/s
Com- < v>coll/ < v>gas = 3π

8 ≈ 1.178
parison < 1

v>gas/ <
1
v>coll = 4

π ≈ 1.273

2.5 Pump or bounce

The user can define pumps in the system by assigning sticking factors s (probability of absorption for
the impinging particle) or pumping speeds S to certain facets. Assuming equilibrium, the two quantities
can be converted to each other:

S[m3/s] = s · 1

4
vavg[m/s] ·A[m2]

where vavg is the average molecule speed and A is the facet area. When a collision happens with a pump
facet, a uniformly distributed pseudo-random number is generated, and if it is smaller than s, the test
particle is removed from the system and a new one is generated at a source facet. Otherwise the test
particle rebounds.

2.6 Registering hits

Pressure on a surface comes from the momentum change rate of particles colliding with it. Every facet
(or texture or profile slice, see later) has three counters in memory that we increment by the following
quantities:

• We increment Nhit, the ”number of Monte Carlo hits” counter by 1. Knowing the number of MC
hits on a facet will allow us to calculate the impingement rate, moreover it provides important
information on the statistical accuracy of our results.

• To
∑
I⊥, the ”total orthogonal momentum change” counter we add the orthogonal momentum

change, mv⊥ = mv cos θ of the incoming and outgoing particle (θ is the test particles incident
angle, v is its speed and m is its mass) 5. We will need this counter to calculate the pressure.

• We also use a third counter,
∑

1
v⊥

to store the sum of the reciprocals of the orthogonal speed

components, 1
v⊥

= 1
v cos θ . We need to store this quantity for the calculation of particle density

near the facet, as explained later.

2.7 Rebound

Once we have registered the hit by incrementing the counters, unless the particle is pumped, the algorithm
proceeds to the next iteration: it assigns a new velocity and a new direction for the outgoing particle.
The direction is chosen according to the user setting: by default, a facet is diffuse so a new random
direction is generated following Knudsens cosine law, but the user can also choose specular reflection.

A particle can interact with the wall which results in energy and momentum exchange. Its new
speed thus depends on the thermal accommodation coefficient, Aacc. By default, total thermalization

5in case of desorption, the outgoing component is added, whereas the incoming for absorption and both for reflection
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(Aacc = 1) is assumed, in which case - regardless of the incident velocity - a new velocity vwall is generated
according to the frequency-modified speed distribution, which takes into account the facets temperature.

The accomodation coefficient is defined differently across literature (for example, [12] uses my notation
comparing the incident and outbound energies as opposed to [13] comparing the incident and outgoing
velocites whereas [14] is distinguishing an orthogonal and tangential accomodation factor). I consider the
thermalization coefficient as the ratio of kinetic energy change compared to that of total thermalization
(definition above). In this case, the new velocity is calculated as:

v2new = v2old +Aacc(v
2
wall − v2old)

where vold is the incident velocity and the thermal accommodation coefficient, Aacc must be between 0
and 1.

Once the new speed and direction are chosen, then the orthogonal momentum change and speed
reciprocal counters of the facet are incremented again to take into account the outgoing particles impulse
and reciprocal speed.

It is worth mentioning that this algorithm is executed parallel on every CPU core present in the
system (one core taking care of one test particle at a time), and taking advantage of the linearity of UHV
systems, the counters are summed in the end.

2.8 Calculating physical quantities

Using the counters above, the following physical quantities can be calculated:

2.8.0.1 Impingement rate The impingement rate on a wall is the number of collisions, Nreal per
second per unit area. To calculate it, we need the following quantities:

• The number of incoming physical molecules per second each test particle represents, K real
virtual

• The number of test particle hits on the given facet, Nhit

• The area of the facet, A

With all the above, the impingement rate can be expressed:

z =
Nreal
dt ·A

=
Nhit ·K real

virtual

A

Molflow+ applies a few more coefficients to correct for double-sided and half-transparent facets 6, but
for simplicity they are omitted here.

2.8.0.2 Pressure When particles desorb, absorb or bounce on a facet, their rate of momentum
change exerts a force on the wall, which - divided by the area - is the pressure. Since we have previously
stored the sum of momentum change rates in a dedicated counter, to obtain the pressure all we have to
do is to scale it up by the K real

virtual
ratio (which already includes the time normalization to one second)

and then divide by the facet area:

p =

∑
dI

dt ·A
=

∑
I⊥ ·K real

virtual

A

2.8.0.3 Density It is not straightforward to calculate density directly in Molflow+: in an event-
driven simulator, the main idea is to simulate events only on walls and ignore everything in between,
whereas for a direct density measurement we would need to count the number of test particles in a test
volume. It is, however, achievable through a simple derivation7 that connects the density in a volume
with the number of particles crossing a surface nearby:

As shown in Fig.5, a molecule traveling with velocity v⊥ will hit a surface within time ∆t if it is
closer than v⊥∆t to the wall. Therefore, the number of collisions for molecules traveling with velocity
v⊥ during the next ∆t period is:

#collisions, v⊥ =
N

V
A∆tv⊥

6these half-transparent facets serve to represent periodic structures, for example grids, where regardless of the hit
location there is a certain, constant probability of a particle being able to cross to the other side

7This derivation can be found in many places in literature, one example is [15]
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˔

Figure 5: For a given position within the volume, only particles with high enough orthogonal velocity
will hit the surface in the next ∆t period. Redrawn based on [15]

where N/V is the density of molecules and A is the surface area. Since the molecular speeds are
distributed, we integrate this expression over the velocity distribution function f(v⊥)8:

#collisions =
N

V
A∆t

∞∫
0

v⊥f(v⊥)dv⊥ =< n>volumeA∆t < v⊥>gas

And since the impingement rate is the number of collisions per unit time and area, we can write:

< n>volume =
#collisions

A∆t < v⊥>gas
=

zsurface
< v⊥>gas

Here zsurface is the impingement rate on the surface, and < v⊥>gas is the average of the orthogonal
speed components of those particles that move toward the surface. Weve already calculated the impinge-
ment rate above. Obtaining < v⊥>gas requires more steps, though: unless we use test volumes or other
tools, we wont be able to compute it directly. What we can calculate, however, is the speed distribution
on an adjacent facet. Using the definition

∫∞
0
f(v)⊥gasdv = 1 we can write:

< v⊥>gas =
< v⊥>gas∫∞

0
f(v)⊥gasdv

< v⊥>gas =
< v⊥>gas∫∞

0
f(v)⊥gasv

1
vdv

Then using eq.4:

< v⊥>gas =
1∫∞

0
f(v)⊥gasvC

1
vdv

Then, using eq.3 we can write:

< v⊥>gas =
1∫∞

0
f(v)⊥coll

1
vdv

=
1

< 1
v⊥
>coll

At this point we moved from using < v⊥>gas to < 1
v⊥
>coll which can be sampled by Molflow+. Therefore

the density on a facet, using the
∑

1
v⊥

counter, will become:

< n>volume =
zsurface
< v⊥>gas

= zsurface· <
1

v⊥
>coll =

Nhit ·K real
virtual

A
·
∑

1
v⊥

Nhit
=

∑
1
v⊥
K real

virtual

A

2.8.0.4 Average velocity As described in the previous point and also shown in Table 1, the average
speed in the gas can be calculated:

< v⊥>gas =
1

< 1
v⊥
>coll

=
Nhit∑

1
v⊥

8For clarity, here I ignore the molecules that move away from the surface (v⊥ < 0). Otherwise I would integrate from
∞ to +∞ and divide the result by 2
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Figure 6: Solid angles for small and large incident angles: even in uniform directional distribution, more
particles would reach the target facet (in the center of the hemisphere) from large incident angles
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Figure 7: Incident angle distribution on a facet in equilibrium state, for a gas of 28 g molar mass and
300 K temperature

2.8.0.5 Angular profiles In Molfow+ we can also calculate the directional distribution of incident
molecules on a surface. A 100-value histogram counts the absolute value of the incident angle (ie. two
particles coming from opposite sides with the same incident angle will count the same, since facets
dont have default directions). The incident angle range of 0..90 degrees is distributed over the 100
profile values. One important note is that - similar to velocities - there is a difference between angular
distribution in a volume of gas and the angular distribution of particles that cross or hit a surface during
a given time. This is because particles with large incident angles (incoming almost parallel to the surface)
might originate from a larger solid angle than those that arrive perpendicularly. This is demonstrated
in Fig.6.

Therefore a normalization is included (as a user option) to correct for this effect: the value for each
bin of the angular distribution is normalized by the corresponding solid angle (the solid angle for incident
angle θ is dω(θ, φ) = sin θdθdφ, therefore the normalization consists of a division by sin θ, then a second
division to assure that the sum of the distribution is 1). In equilibrium, without this correction, the
distribution would be p(θ) ≈ sin(θ) cos(θ), and with the correction, it becomes p(θ) ≈ cos(θ) which is
what Knudsens cosine law stipulates. This is shown in Fig.7.

2.8.0.6 Speed profiles We can also sample the distribution of the incident velocities of test particles

on a facet. The 100 histogram bins correspond to the speed range 0..4 · vmost probable = 0..4 ·
√

2RT
Mkg/mole

.

As with the angles, a surface-volume conversion is possible: in this case each value of the distribution
is divided by the speed it belongs to, then the distribution is renormalized (effectively converting from
f(v)coll to f(v)gas of Table1). There are two types of speed profiles (see Fig. 8): one for the absolute
value of the incident speed (giving information on the gas temperature), and one for the orthogonal
component (which determines the pressure).

2.9 Error of the results

When assessing the statistical error of Molflows results, we can apply a scientific (quantitative) or a
practical (qualitative) approach. I first present the quantitative. In mathematical termos, a Monte
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Figure 8: Incident speed and orthogonal velocity distribution on a facet in equilibrium state

Carlo simulator is approximating a physical result by carrying out a given number of experiments and
counting the number of positive outcomes.

In case of calculating the transmission probability of a tube, for example, each traced test particle
would be one experiment, and the positive outcome would be that the particle leaves the system on the
side which is opposite to where it came from. The transmission probability p would correspond to the
probability of positive outcomes: p = n/N where n is the number of test particles leaving on the opposite
side, and N the total number of traced test particles.

In case of the pressure at a certain location, for simplicity well assume that the gas has a Maxwellian
behavior (i.e. the system is isothermal and beaming effects are not important). In this simpler case the
pressure is directly proportional to the number of hits at the location. So omitting some normalizing
constants - the pressure can be expressed as a function of p = h/N , where h is the number of hits at
that point, N is the total number of hits and thus p is the probability that a hit happens at the given
location.

The two examples above can be translated to probability theory: the discrete probability distribution
of the number of successes in a sequence of N independent yes/no experiments, each of which yields
success with probability p, is the binomial distribution.

The expected value of positive outcomes of such a series of experiments is N · p, and the variance of
the result is N · p · (1− p).

As suggested by Suetsugu [7], for Monte Carlo simulations we can assume a very large number of
experiments, where using the notation of the two examples above, p ∼ n/N or p ∼ h/N . In this case
the normalized standard deviation, expressed as a percentage of hits (positive outcomes), can be derived
from the variance formula above as:

σn (%) =
σ

n
· 100 =

√
1

n

(
1− n

N

)
· 100 (5)

Suetsugu also correctly points out that as we trace a particle through consecutive hits, not each
experiment is independent from the others statistical fluctuations in adjacent locations are correlated
distorting the above estimation. I would argue that due to this, the exact error depends on the geometry
of each simulation and as such there is no universally valid formula to estimate it. However, from eq.5
we can retain that the error of p ∼ n/N scales with 1/

√
N : for example, to reduce the error of the

calculated pressure to its half requires to run the simulation four times longer.
Since the quantitative formula only gives an approximation, it is important to mention the qualitative

approach that most Molflow+ users go along with when simulating a vacuum system. As mentioned
above, post-processing visualization tools are updated every second as simulation runs, which as shown
in Fig.9 means in practice that profiles and textures become smoother. In most cases the user has an
expectation of the pressure profile, so statistical scattering can be visually identified through inhomo-
geneities of drawn textures.

Staying at the example in Fig.9 for example, the engineer using the software either knows that the
profile from desorption to the pump should be linear, thus he/she can fit a straight line on the obtained
plot and isolate the statistical error. Otherwise the user can argument that the system is axisymmetric,
therefore texture cells at the same longitudinal coordinate should have the same color, and deviation
from it must be due to statistical scattering. The dependence of the error can be verified to vary with
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Figure 9: Texture and profile results for a vacuum tube with desorption at the left and pumping at both
sides, as a function of the number of traced particles.
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Figure 10: Normalized standard deviation of Molflow+ results as a function of the simulated test-particles

1/
√
N . In the above example I calculated the deviation of the number of hits 9 from the theoretical

solution (which in our example is a pressure profile of a straight line) and plotted it as a number of the
traced test particles in Fig.10.

The plot, containing a fit with the analytic formula confirms that the error squares approximately
with the inverse of the square root of the number of hits.

3 Time-dependent Molflow+ simulations

Once we keep track of the molecule speeds, apart from the possibility to calculate the pressure in a
direct way (based on particle momentum change), it also becomes possible to determine the time when
each hit happens, which opens the way to simulations in the time domain. On every facet, instead of
calculating one global (steady-state) statistics using every registered hit, we take into account only those
that happen at a certain moment - thus we can obtain the physical quantities for that instant.

The algorithm is still event-driven, and is essentially the same as that of the steady-state simulations
explained above, but some corrections and fine-tuning is required.

3.1 Parameters

When our simulation treats time-dependent problems, both the outgassing and the facets physical pa-
rameters, such as sticking factor, opacity, etc. can vary over time. This is included in Molflow+ through
parameters (see Fig.11): the user references a parameter (by name) at the given facets property list,
then he proceeds to define that parameter by entering a list of time moments and the parameters values
at those instants. For every event on that facet, Molflow+ will use the actual, time-dependent value, ob-
tained by linear interpolation within the user-defined defined time range, and by constant extrapolation

9I extracted the number of Monte Carlo hits instead of the pressure because the latter is already normalized by the
number of traced particles
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Figure 11: Time-dependent parameter definition for a gas pulse in Molflow+

outside. This is done directly for sticking factors and opacity, and with an intermediate step (integration)
for time-dependent outgassing, see later.

3.2 Moments and time window

We aim to simulate a large number - possibly billions - of hits. In the original, steady state algorithm,
this doesnt cause a memory problem since these hits arent stored individually: they only increment
counters on facets.

In the time-dependent mode, however, the direct way to gain statistics would be to store a list of
hits along with the time they occur for every facet10. This would, consequently, mean that the longer
the simulation runs, the more memory wed need. But limiting the number of hits, and along with it the
statistical accuracy is not an option, therefore we have to implement an indirect approach.

We use binning: we ask the user to decide in advance at what moments he is interested in the
pressure and density profiles. This is usually a series of moments t1, t2...tN with equal or logarithmically
increasing differences, ie. the time range when the dynamics of the system is interesting. We will then
create three counters, for every moment and every facet:

• Nhit,i, the number of MC hits on the facet at moment i

•
∑
I⊥,i, the sum of orthogonal momentum changes of particles hitting the facet at moment i

•
∑

1
v⊥,i

, the sum of the reciprocals of the orthogonal speed components of particles hitting the facet

at moment i

Consequently, if a hit happens at ti, it will increment the ith counter. That way the pressure and
other physical quantities at that moment can be calculated similarly to the steady state using values of
the counter with the same index, and the user has several tools to visualize the dynamic behavior of the
system.

One problem to tackle though is that no hit will happen exactly at ti with infinite precision. Therefore
we introduce the term time window, serving as a tolerance: we will treat all hits between ti− twindow

2 and
ti + twindow

2 to have happened at the ith moment and accordingly, increase the ith counter.
The time window can be set by the user. In practice, it has to be small enough to reveal the fast

pressure changes in the system, but large enough to contain a number of hits that is sufficient for the
desired statistical accuracy. The good choice is one that matches the pressure change speed of the
simulated system, and sometimes it needs to be found by trial and error across multiple simulations.
This is demonstrated during the validation in section 6.1.

3.3 Particle generation

When an outgassing is time-dependent, we must:

• Generate particles so that the distribution of their time of insertion follows the user-defined des-
orption parameter.

• Know how many real molecules one test particle represents.

10As my simulations are event-driven, there is no default ”time step” to store results for.
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Figure 12: Desorption rate and number of desorbed molecules during injection

Both tasks can be solved by integrating the user-defined desorptions on the range t = 0..tlast, for all
outgassing facets, where tlast is the last user-defined moment where the pressure needs to be calculated
(after which we are not interested in the behavior of the system). We store the integrated desorption

function - as illustrated in Fig.12. -, which will also tell us the total number Nf,real =
tlast
∫
0

dNf,real(t)
dt dt

of desorbed particles, on facet f .
For each generated virtual particle, Molflow+ then chooses a starting location. The probability of

choosing a certain facet f as source is proportional to Nf,real, just like in steady-state. Once the source
facet is chosen, the start position of the test particle is generated randomly with uniform distribution
on its surface. To decide the desorption time, we generate a random number uniformly between 0 and
Nf,real, then interpolate the desorption time in the integrated desorption function corresponding to that
random number. That way, the particles will enter the system following the user-defined distribution,
and when the simulation traced Nvirtual test particles, each one will represent

K
real

virtual=
∑
f Nf,real
Nvirtual

real molecules.

3.4 Radioactive decay

As we already keep track of the flight time for every particle, it is straightforward to add radioactive
decay to the algorithm: upon particle generation, the MC algorithm assigns the instant of decay, tdecay for
each particle of user-defined half-life T1/2 entering the system, with the method described hereafter. The
probability that the particles lifetime will be t is given by the exponential probability density function:

P (t) =
1

τ
exp(− t

τ
)

where τ = T1/2/ln(2). Random numbers following this distribution are then generated by the inver-
sion method: a random number rnd, generated uniformly between 0 and 1 must equal the cumulative
distribution function:

rnd = 1− exp(−t/τ)

The solution of this equation for t is:
t = −τ · ln(1− rnd)

Using rnd in place of 1− rnd, we can express the time of decay:

tdecay = tdes − τ · ln(rnd)

where tdes is the time at which the particle enters the system. Each time a particle hits a facet, the time
of the hit thit is compared to tdecay, and the particle is eliminated at the first hit when thit > tdecay.
As Molflow+ is event-driven, the exact location of the decay (in the volume, between two hits) has no
interest because statistics is gathered only on surfaces. One exception is if the user sets up counter facets:
these transparent facets in the volume execute the lifetime check of all passing particles, therefore - if
needed - they allow visualization of the decay en route between the vacuum chamber walls.
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3.5 Wall sojourn time

Once the time when the particle enters the system is known, for every subsequent hit the flight time
is incremented by the time elapsed since the last collision (which is calculated by dividing the distance
from the previous hit location with the particles speed). That way for every hit the time it occurs is
known.

One phenomenon to take into account for making these hit times more accurate is the residence time
τ of a molecule on the surface.

The physical process is essentially the same as in case of the radioactive decay: each molecule on the
surface has a certain, constant probability of escape, resulting in an exponential probability distribution
of the residence time. Its average value has the expression[16]:

τ = τ0 · exp(Q/RTf )

where Tf is the facet temperature, τ0 is the molecule vibration period, and Q is the molar adsorption
heat. If the user defines these two parameters (two, because Tf is already defined) then each bounce time
is delayed with a sojourn time that is generated following the exponential probability density function.

3.6 Calculating physical quantities

We can calculate impingement rate, pressure and density similar to the methods in the steady-state
simulations, with one remarkable difference: while at steady state, each test particle represented a
certain number of physical molecules entering the system per second, this time K real

virtual
stands for a

certain - absolute - number of physical molecules that enter the system during the whole simulated
process. Therefore, in time-dependent calculations, the dt in the pressure and impingement rate formulas
is not included anymore in K real

virtual
, and has to be replaced by the time window, as that represents the

duration during which hits are considered to happen at the same moment and increase the same counter.
Therefore, for the ith moment, physical quantities can be calculated as follows:

3.6.0.1 Impingement rate Per definition, the impingement rate is the number of collisions per
second per unit area, however, our counter contains hits for the period of the time window, so to have
the per second hit rate, we divide by twindow to get:

zi =
Nreal,i
dt ·A

=
Nhit,i ·K real

virtual

twindowA

3.6.0.2 Pressure Similar to the impingement rate, we need to divide by twindow which represents dt
in the pressure formula at the ith moment:

pi =

∑
dI

dt ·A
=

∑
I⊥,i ·K real

virtual

twindowA

3.6.0.3 Density To calculate the density at moment i, we start from the impingement rate and the
sum of reciprocal orthogonal velocities at that moment, and apply the correction by twindow:

< n>volume,i =
zsurface,i
< v⊥>gas,i

= zsurface,i· <
1

v⊥
>coll,i =

Nhit,i ·K real
virtual

twindowA
·
∑

1
v⊥,i

Nhit,i
=

∑
1

v⊥,i
K real

virtual

twindowA

3.6.0.4 Average velocity Like at steady-state, the average speed at moment i can be calculated:

< v⊥>gas,i =
1

< 1
v⊥
>coll,i

=
Nhit,i∑

1
v⊥,i

4 Post-processing in Molflow+

Although results of Molflow+ simulations can be exported for external processing, the design idea was
to create an all-in-one vacuum simulation tool, therefore some post-processing is provided within the
graphical user interface. Since these post-processing tools are often used in the thesis’ images, they are
briefly presented here.
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Figure 13: local U ,V coordinate system of a facet and the longitudinal profile slicing

Figure 14: Pressure, speed and angular profiles for a simple tube within Molflow’s interface

4.1 Profiles

Each facet has a local, 2D coordinate system, with the origin being one of the facets vertices, and its
local U , V vectors delimiting the bounding box, orthogonal to each other. By default, the U vector is
aligned with the facets longest side, though this is adjustable by the user.

As shown in Fig.13, a profile splits the facet to a given number of slices (currently 100) along the U
axis, and samples the pressure, density, number of Monte Carlo hits or the impingement rate indepen-
dently for each slice. The goal is to plot within the user interface the evolution of a physical quantity
along a direction.

There are three special profiles, presented earlier which count a distribution of a quantity for the
entire facet:

• Angular profiles sample the distribution of the incident angles

• Speed profiles sample the distribution of the incident molecular speed

• Orthogonal velocity profiles are similar to speed profiles, but sample only the component of the
molecule speed orthogonal to the facet

As an example, for a simple tube with a length/radius ratio of 10, I desorb gas at one side with
Q = 1× 10−4 mbar l/s and plot the pressure, speed and angular distributions on a wall facet in Fig.14,
after 500.000 desorbed test particles.
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Figure 15: Textures and mesh cells within Molflow+

4.2 Textures

Textures similar to profiles can sample a physical quantity within a facet, but split it in not one but
two directions (along the local U and V vectors on the plane of the facet). The resolution (cell size) is
chosen by the user. Results can be read with a Texture Plotter tool numerically, or visualized by a linear
or logarithmic color scale, with parameters adjustable by the user.

As most physical quantities depend on the cell area, it must be calculated carefully for cells on the
edges. The area of these partial cells can be very tiny compared to full cells, and therefore they might
receive only a very small number of MC hits during the whole simulation. For plotting and autoscaling
purposes, it is the best to ignore their values this can be done automatically in Molflow+ if their area
is smaller than a given percent of whole cells (as in Fig.15).

Visualization is supported for the pressure, the impingement rate and the density.

4.3 Direction vectors

For each texture cell, the user has the option to evaluate the prevailing molecular direction. This is the
average 11 of all velocity vectors incident to the surface (or crossing it in case of transparent facets).
This is shown in Fig.16 for a simple effusion example, where a gas is injected to an infinite, empty volume
(modelled by a box with sticking walls) with an outgassing rate of Q = 1× 10−4 mbar l/s.

The importance of these direction vectors is emphasized when simulating non-isothermal systems,
such as the hot filament / cold walls example in Fig.17, where we can clearly observe a deviation from
the isotropic directional distribution of equilibrium gases.

4.4 Formulas

We also let the user get more insight into the system by allowing him to define formulas, which are
symbolic expressions referring to facet parameters. One can refer to the number of hits, the pressure,
impingement rate, etc. of a facet or a group of facets, and even extract global simulation parameters,
such as the mean free path (in this sense, the average distance of flight between two wall hits), mean
pumping path (average flight distance from desorption to pumping or to radioactive decay point), total
particle influx of the system or the gas mass.

As common mathematical operators, trigonometric functions and physical constants are also included,
among others, these formulas are extensively used for conductance calculations, as in Fig.18.

11averaging is done vectorially: two velocity vectors in the opposing directions cancel each other. Consequently, in
equilibrium, this average velocity vector is zero.
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Figure 16: Direction vectors and density texture in an effusion example

4.5 Time-dependent visualization tools

When performing time-dependent simulations, all the post-processing tools above are available. The user
can step through the predefined moments and the on-screen visualizations are updated for that given
moment. Succession of these visualized system states can be used as frames to compile short videos
showing the system behavior.12

In the time-dependent mode, two additional tools are available:

• A Timewise Plotter (Fig.19) that graphs the pressure profile evolution in a certain direction across
different moments on a chosen surface.

• The Pressure Evolution (Fig.20) that shows how the pressure on a profile changes over time: the
X scale contains all the user-defined moments, and the Y value is the pressure, density or velocity
at that moment.

5 Sectioning the geometry

The complexity limits of the systems that we can simulate depend on the computation speed. In general,
the more facets we have, the longer the ray-tracing algorithm takes to determine the closest collision
point and thus the slower the simulations are. There are some ways, though, to include large or complex
vacuum systems and at the same time mitigate the speed impact of the large number of facets.

5.1 Teleports

Molflow+ allows the definition of periodic boundary conditions. When the ray-racing algorithm finds a
collision with such a boundary, the virtual particle is moved to an other, referenced facet (the opposite
side in case of a periodic B.C.) hence the name ”teleport”. If we can replace a large geometry with only
one pattern that is repeated, we reduce the number of facets accordingly.

In the example below, a simple RF structure is simulated with gas injection on one side and pumping
on the other. Two models are built for comparison: one containing the full revolution, and one with only
a 45◦ slice (Fig.21). In the latter case, the walls of the slice are set as teleports referencing each other. The
total desorption of the slice is one-eighth of the full revolution (1× 10−5 mbar l/s vs. 8× 10−5 mbar l/s)
resulting in the same influx density, and the pumping speed is also one-eighth (in practice, this results in
the same sticking factor of 1 for both surfaces). As the surface normals are tilted by 45 degrees compared

12Two examples of such videos are shared on these permalinks:
https://goo.gl/fgtTQR (Gas expansion and pumpdown following an RF cavity electric breakdown)
https://goo.gl/Pd31Q6 (Gas expansion and pumpdown in a straight tube)
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Figure 17: Pressure, density, velocity and direction vectors in a non-isothermal system at equilibrium;
with a hot filament at T = 800 K at the center and walls at room temperature

to each other, when a teleport happens, the particle direction is also rotated (Fig.22) to correspond to
the real case.

The resulting simulation speed improvement is summed in Table2, and the resulting pressure profile
(Fig.23) is the same.

One other use of teleports is to include a reusable geometry feature only once. This can be for
example a pumping group. Molflow+ can memorize where test particles were teleported from, and if
molecules find their way back to the teleporting surface, they are transported back to the origin. This as
shown on the example in Fig24 is essentially a single-to-multiple logical assignment, once again reducing
the number of facets.

5.2 Structures

As stated before, the ray-tracing checks for collisions with all facets and then among the collisions found,
it selects the shortest (although due to optimizations the exact implementation is somewhat different).

QCONST_N/100/(Kb*T5)*SUM(A,S1)/SUMDES

Facet group 1
(containing all exits)

All absorbed molecules
on the exits

Total number of 
desorbed 
molecules

Temperature on facet 5
(Gas source)

Boltzmann 
constant

Outgassing 
rate 

[mbar*l/s]

Conversion factor
mbar.l/s -> Pa*m3/s

Figure 18: Molflow+ formula for calculating the outgoing flux of particles on a vacuum part
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Figure 19: Timewise Plotter in Molflow+ 2.6 showing the pressure evolution at eight different moments
in a tube without (left) and with (right) an acoustic delay device

Figure 20: Pressure evolution plotter window showing the pressure response signal on a target after a
desorption pulse at t = 0

In Molflow, it is possible to speed up the process by dividing a usually linear geometry to distinct
sections, and defining them as separate structures. In this case collisions are only sought with facets in
the actual structure. Connection between the structures is done by link facets. When a test particle
crosses such a link facet, its actual structure is updated.

A very simple example is shown in Fig.25, where a short pipe is split in half, with a link facet in
the middle. The speed advantage is almost linear: in theory splitting to N structures would yield an N
times faster simulation, but the speedup is mitigated by the extra collisions with link facets, the fact that
not all structures have the same number of facets, and the non-negligible user time spent with setting
up the sectioning and the links.

To give a real-life example, the method has been applied for a static analysis of the radioactive ion-
beams facility ISOLDE. Working together on the problem with my colleague M. Maietta, as explained
in detail in her MSc thesis [17], the model of the ISOLDE vacuum line was split to 9 different structures,
as shown in Fig.26, making the simulation approximately four times faster, as shown in Table3.

Table 2: Periodic B.C. performance results

Full revolution 45◦ slice with teleports

Number of facets 25491 3492
Traced molecules/sec 10.5 36
Hits/sec 8200 28000
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Figure 21: Periodic structure (left) and its full equivalent (right)

Figure 22: Particle trajectories rotating as following teleports

5.3 Simulating by parts (Convolution method)

When simulating linear vacuum systems with powerful pumps, a relatively frequent problem is the large
pressure difference between different parts. When Molflow+ traces molecules, a test particle always
represents the same number of physical particles (or in case of steady-state simulations, a flux of a
certain number of particles per second). This means that if there is a part of the geometry where the
pressure is orders of magnitude higher than at other parts, most of the ray-tracing will ”focus” on that
high-pressure part.

This is shown on an example in Fig.27 showing a linear vacuum system with a desorption of
1× 10−3 mbar l/s on one side and a series of pumps with sticking factor 1 placed downstream. Most of
the test particles are caught by the pumps before they can reach the low-pressure region on the right
side. Since the pressure difference is of 5 orders of magnitude (1× 10−3 mbar vs. 1× 10−8 mbar), to
simulate a single hit on the low-pressure side, 100.000 hits must be calculated on the high-pressure side.
This results in an inefficient distribution of test particles, and the statistical scattering will be very high
on the low-pressure side.

An idea to tackle this issue is to do two (or even more) different simulations instead of one: If we
determine that as shown in Fig.27 only 0.1% of the particles desorbed from point A will reach the
middle (point B) of the system (we will refer to this ratio as transmission probability), then we could

Table 3: Teleport performance results

Four pumping ports One p.p. with teleport

Number of facets 701 601
Traced molecules/sec 1.600 2.200
Hits/sec 560.000 776.000
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Pressure [mbar]

Figure 23: Pressure results for the periodic and the full RF model

Pressure [mbar]

Figure 24: The same system modeled with 4 distinct pumping groups (left) and a reused structure with
teleports (right). Teleports are marked with yellow dashed lines. The resulting pressure profile (color
code, on the nearest side of the pipes) is the same.

launch a second simulation, desorbing particles only from point B to the right side, with a physical
desorption rate which is 0.1% of the original. That way the speedup on the low-pressure side is of a
factor of 1000. We could apply this method repeatedly, launching a new simulation from every point
where the pressure drops significantly (launching a third simulation at point C would improve statistics
downstream by an additional factor of 100).

When applying this method, we have to take into account the beaming effect, though: in a tubular
geometry where there is a dominant molecular direction (from the desorption point to the right, in our
case), the molecular motion is not isotropic. In Molflow, we can calculate the distribution of the incident
angles at the desired relaunch point through angular profiles, and if significantly different from isotropic
we can adjust the directional distribution of the new simulations desorption to one that is similar to
what we sampled.

Staying at the ISOLDE vacuum system, this method was applied to calculate the time of flight of
radioactive isotopes from point A to C, as shown in Fig.28. The method is described in detail in Chapter
6 of [17]. To summarize it, the idea is the following:

If the time of flight from point A to B is described by the (discrete) distribution f , and the T.O.F.
from B to C is described by g, then the T.O.F. from A to C will be a sum of two random variables, and
its distribution will be described by the convolution of f and g [18]:

(f ∗ g) [n] =
∑
∞
f [m] g [n−m]

Since due to the pumps upstream of point B, there is a significant pressure drop between points A
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Figure 26: Sectioned system of the ISOLDE transfer line, drawn based on geometry from Maddalena
Maietta[17]

and B, it is a good idea to as described before perform two separate simulations.

• The first simulation will determine the T.O.F. distribution f and the transmission probability from
point A to B (distance: 661 cm)

• The second will launch test particles from point B, with a physical outgassing rate adjusted by the
previously determined transmission probability, and give the T.O.F. distribution g between points
B and C (of 690 cm distance)

• The resulting T.O.F. distribution for the whole system will be the convolution of f and g, as shown
in Fig.29.

Table 4: Sectioning details

Structure Number of facets

1 9180
2 699
3 959
4 321
5 192
6 682
7 143
8 741
9 1049

SUM 13966
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Table 5: Sectioning performance

No sectioning 9 structures

Traced molecules / sec 2.2 8.2
Hits / sec 4000 17000

Pumps

D
es
o
rp
ti
o
n

A
100%

B
0.1%

C
0.001%

Figure 27: Linear system with desorption from the left and pumps at locations marked by red. The
pressure profile, as calculated after 1 million desorbed test particles, is shown on a logarithmic scale under
the geometry, with transmission probabilities marked in yellow at three locations. Statistical scattering
is high at low-pressure parts.

6 Theoretical validation

The original, steady state algorithm of Molflow has been validated and used on many occasions in
accelerator design since its first publication over the last 20 years. We concentrate therefore on the new
algorithm capabilities:

6.1 Time-dependent simulations

First we compare a simulation in the time domain against textbook results. We simulate injection and
pump-down processes in a cylinder of 10 cm length and 10 cm diameter (thus a volume of V = 0.785 l).
We inject nitrogen from one side with a rate of Q = 1× 10−6 mbar l/s between tstart = 0.005 s and
tstop = 0.020 s while constantly pumping at the other side with S = 500 l/s. The gas and the walls are
kept at 20 ◦C, and the cylinders length/radius ratio is small enough to treat it as a single volume where
conductance doesnt limit the flow of the gas.

A

B

C

Figure 28: ISOLDE transfer line used for Time of Flight calculations. Redrawn based on Figure 6.1 of
[17]
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Figure 29: Results after the same computing time, with and without the convolution method. Redrawn
based on Figure 6.2 of [17]

Figure 30: The 3D model representing the cylinder. The green lines show the test particle trajectories;
the transparent facet in the middle (shown in red) samples the pressure.

While the pump is running, every second it extracts S/V ratio of the N molecules in the system.
Including the gas injection, the governing differential equation will be:

dN

dt
=
dNinject

dt
− S

V
N

Knowing that the pressure - in this case - is proportional to the number of molecules in the system, and
using vacuum theory to express the steady-state pressure as pconst = Q/S, we can solve the equation for
the injection and the pump-down durations:

p(t)injection =
Q

S
(1− exp(− t− tstart

τ
))

p(t)pumpdown =
Q

S
exp(− t− tstop

τ
)

To simulate the above process, we create a model in Molflow+, presented in Fig.30. It consists of 100
sides and 2 cap facets of the cylinder, and an additional transparent facet in the middle to measure the
average pressure in the system. The wall facets use diffuse reflection, one cap facet serves as gas source
(governed by a time-dependent desorption function, which is Q = 1× 10−6 mbar l/s between tstart and
tstop and 0 elsewhere), and the other as the 500 l/s pump, which converts to a sticking factor of 0.54.

Three simulations are performed with a time window of 1× 10−3 s, 1× 10−4 s and 1× 10−5 s respec-
tively. We record the system state at 40, 400 and 4000 equidistant moments between t = 0 and t = 0.04 s,
therefore the distance between the recorded moments corresponds to the time window length in all three
cases. We run the simulation with 1 million test particles. This results in approximately 11 million hits,
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Figure 31: Pressure profiles for an injection-pumpdown process with too large, optimal and too small
time windows.

Table 6: Analytic and Molflow+ results for the thermal creep problem

Temperature Pressure Density
T1 = 100 K p1 = 2.89× 10−5 mbar n1 = 2.10× 1018 m−3

T2 = 450 K p2 = 6.13× 10−5 mbar n2 = 9.91× 1017 m−3

Theoretical ratio: Molflow+ ratio: Molflow+ ratio:√
T2/T1 = 2.121 p1/p2 = 2.122 n2/n1 = 2.115

and for reference, the computing takes around 10 seconds on a standard desktop PC. The pressure values
for all moments are plotted in Fig.31.

Looking at the results we can make two observations. The first is that choosing the time window
correctly is important: on the left plot of Fig.31 we can see that a large time window will smooth
out thus hide the beginning of the injection and the pumpdown. The optimal time window (middle),
twindow = 1× 10−4 s shows a very good match between theory and simulation. On the other end, choosing
a too small time window will introduce excessive statistical scattering: to gain the same number of hits
(i.e. accuracy) for every moment with a ten times smaller time window, we would need to run the
simulation ten times longer.

There is no universally correct size for the time window, but the systems dynamics can give us
the order of magnitude: in this case, the characteristic pump-down time of the system is τ = V

S =
1.57× 10−3 s, and the optimal time window size was approximately one-tenth of it.

6.2 Non-isothermal systems

Results of the new algorithm for non-isothermal systems can be demonstrated and checked against
theory through a simple vacuum part with two vessels connected by a narrow pipe. One vessel is hot
(T1 = 450 K), the other is cold (T2 = 100 K), and the pipes temperature changes linearly in between.
The cubes have a volume of 2 l, the connecting pipe has a 3x3 cm rectangular cross-section and a length
of 30 cm.

Gas in this system will exhibit a phenomenon called thermal transpiration: even at equilibrium, due
to higher molecular velocities, pressure will be locally higher on the hot side, while the molecule density
will be higher on the colder side. The theoretical[19] pressure and density ratios are given by the formulas

p1/p2 =
√
T1/T2

n1/n2 =
√
T2/T1

The Molflow+ model shown in Fig.32 consists of 36 facets. The pipe connection is split to six 5 cm
long sections to model the temperature gradient in 50 K steps. All facets have textures with 1x1 cm
cell size to sample and visualize the pressure, impingement rate and density. One side facet has a
Q = 1× 10−7 mbar l/s outgassing rate and an s = 10−6 sticking factor, so low that the system is in
quasi-equilibrium (each inserted test-particle has an average of 12 million hits all around the system
before being pumped). 2 billion hits were simulated, taking about 10 minutes of computing time. The
pressure and density ratios in table 6 show a good match between simulation and theory.
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Cold side (100K) Hot side (450K)

Pressure [mbar] Particle density [1/m3]

Cold side (100K) Hot side (450K)

Figure 32: Pressure and density at equilibrium in a non-isothermal system
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7 Experimental validation (CERN)

In 2014, when the new time-dependent code was first introduced internally at CERN, one of its immediate
practical applications was the simulation of the AWAKE plasma cell opening process. In the AWAKE
experiment[20], a plasma cell must be periodically opened to allow a laser pulse to pass through, which
in turn allows the pressurized Rubidium in the cell to propagate down the vacuum line. The pressure
gradient created by this process has an undesired defocussing effect, therefore precise modeling of the
system is necessary. The new code was used to simulate the process, and subsequently an experimental
station was assembled at CERN to test the prototype of the system.

7.1 Experimental setup

The test station, as shown in Fig.33, consists of a 4 m long, 40 mm diameter cylinder that represents
the plasma cell. It is separated from the vacuum line by a VAT gate valve. The vacuum line consists
of three approx. 7 m long, 80 mm diameter stainless steel tubes. Pumping is performed at the vacuum
side of the gate valve by a 500 l/s turbo-molecular pump. There were additional pumps installed on the
system which helped the initial pump-down process but were separated during our tests.

The experiment is performed in a way to simulate the actual cycle the AWAKE plasma cell goes
through:

• We pressurize the plasma cell prototype to 1× 10−2 mbar, the reference pressure of the AWAKE
plasma cell, through the variable leak valve at P6

• By pressing a button on its controller, we open the gate valve (actuated by compressed air), allowing
gas to flow out of the pressurized cell

• Approximately one second later, we close the gate valve

• During a 30 second pause, the gas that entered the vacuum line is pumped down, and the cell is
pressurized to 1× 10−2 mbar again

During the cycles, pressure is measured at each interconnection of the 7 m pipes (referred to as P1, P2
and P3), on each side of the gate valve (P4 and P5), and also at the middle of the plasma cell prototype
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Figure 34: Parts of our experimental bench at CERN

(P6). We have placed IKR070 (Penning) gauges of range 10−8..10−3 mbar to P1, P2 and P3 where
pressure is expected to be low at all times, IMR260 (all-range) gauges of range 10−6..1 mbar at P5 and
P6 since those points are pressurized to 1× 10−2 mbar, and both types of gauges at P4 which are at low
pressure for most of the cycle but reach a high-pressure peak after the opening of the valve. Sampling
of the gauge voltages is performed at 19.2 kHz and converted to pressures during post-processing, taking
into account the different gauge sensitivities for the different types of gases used: we performed our tests
with either air or Krypton (choosing the latter because its mass is close to that of Rubidium).

For each test run we repeated the cycle four times. System behavior differed significantly between
the first and second cycles (at the first cycle we started from a clean state), and differed only slightly
between subsequent cycles (manual valve operation couldnt guarantee the same valve opening duration).
For the comparison with our simulations below, we have selected a representative cycle, using air as
injected gas.

7.2 Simulation

A CAD model representing the vacuum part of the real system was created and imported to Molflow+.
After merging coplanar surfaces, it was reduced to 1700 facets. The fast-opening valve, as seen in red in
Fig.35 is represented by a facet with time-dependent opacity, whereas the 567 l/s turbo-molecular pump
is modeled with a single facet (of sticking factor 1) at the aperture of the real pump. The experiment
cycle was modeled with the following time-dependent parameters:

• Gas desorption was set at point P6 to be 0.321 mbar l/s between t = 0.1..0.3 s and 0 outside of
that time range. This pressurizes the valve-delimited cell volume to 1× 10−2 mbar.

• Valve opacity was set to 1 (closed state) until t = 2s. Then it was set to decrease to 0 (fully open
state) within 100 ms. It is left open until t = 3.2s, after which its opacity changes back to 1 during
50 ms. With these values the simulated valve opening/closing times coincide with those measured
electronically.

• Pressure is recorded in 600 equidistant steps between t = 0 and t = 6s, and the time window was
chosen to match the time step: twindow =0.01 s.

30 billion test particles were desorbed to reach a good statistical accuracy. For reference, the calcu-
lation took 11 hours on a standard desktop PC. This relatively long simulation time comes from the fact
that all hits up to the flight time of 6 s need to be calculated, taking 48.000 collisions per desorbed test
particle on average. Some speedup was achieved by removing particles once their flight time reached 6 s,
as opposed to tracing them until they are pumped. As the simulation doesnt account for the residual
gases in the real system, the measured background pressure was added to all calculated pressure values.

7.3 Results

For comparison, the measured values were offset in time so that the valve opening happens at t = 2s for
both the simulated and the measured datasets. Results (measured vs. simulated pressures) are shown in
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Figure 35: Molflow+ model of the system, with the facet representing the fast valve in red

Figure 36: Pressure evolution - simulation vs. measurement

Fig.36. Error of the measured values can be estimated to be 15% (precision of an average vacuum gauge
whose temperature is not controlled), and the error of the simulated values, the statistical scattering
depends on the pressure (the lower the pressure, the smaller the number of hits thus the larger the
scattering). The following can be observed:

• At P5 and P6 before t = 1s (red and blue markers), simulation over/undershoots the initial pressure
of 1× 10−2 mbar. This is because the initial state was achieved in the simulation with a short,
pulsed gas injection at P6 (overshoot), which then spreads in the plasma cell reaching equilibrium
with P5.

• At P4, the measured pressure from both the IKR070 and the IMR060 gauges is displayed (dark
and light gray): in the high pressure region, the Penning gauge is over range, therefore the IMR060
signal should be trusted; as opposed to the low pressure region, where the latter is underrange and
the real pressure is indicated by the IKR070 gauge. The transition can be well observed at the
valve closing moment, t ≈ 3.3s.

• Most importantly, the measured pressures have delays, originating from the gauges. We can ap-
proximate it by using the valve opening moment, t = 2 s as reference: whereas the simulation
predicts and immediate pressure change at P4 and P5 (which is the physical solution as gas will
flow from the plasma cell as soon as the valve is open), looking at the measurement curves, we can
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see a significant delay at both points.

• Correcting for this approx. 0.2 s of delay would result in a significantly better match between the
measured and simulated values, however it was deliberately not done to benchmark the accuracy
of Molflow+ simulations ”out of the box”.

Apart from the gauge delays and the trick necessary to measure in both low and high pressures at P4,
the simulated values match reasonably well with the measured results. Differences can be attributed to
physical phenomena not included in the simulation, like different components of air propagating with
different velocities, pumping speed inexactitude, etc. It is also important to consider that Molflow+
assumes molecular flow condition, which is not strictly the case in the 1× 10−2 mbar region.
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