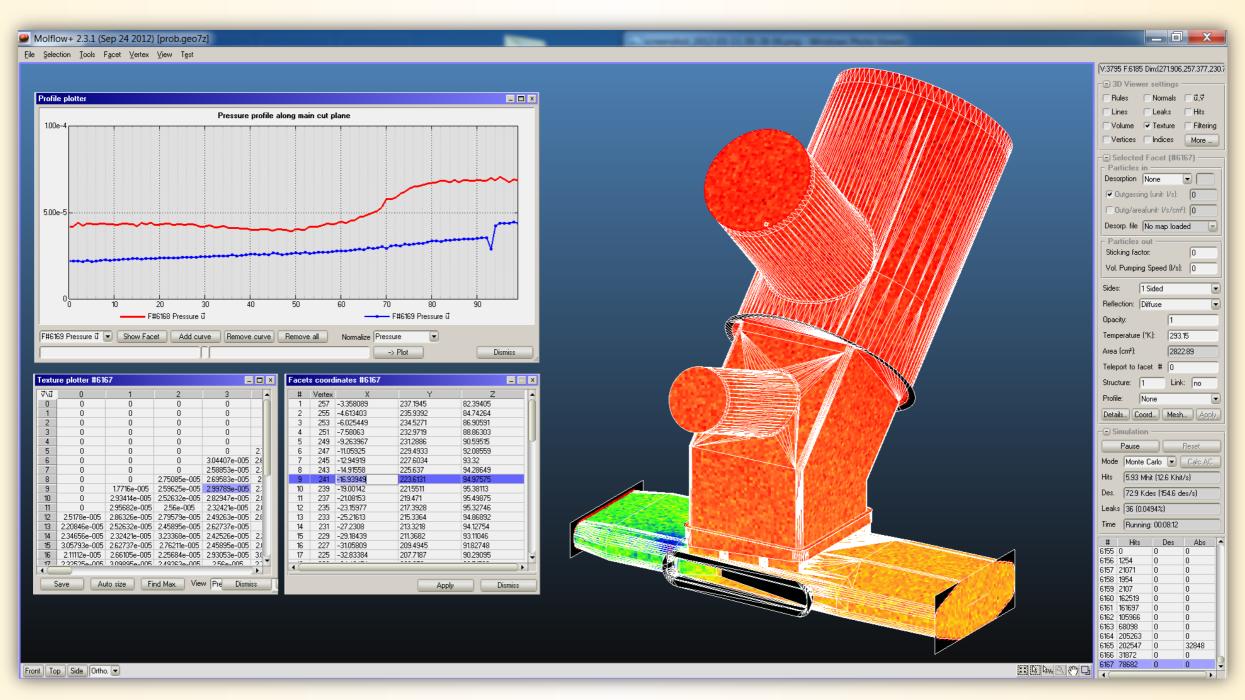
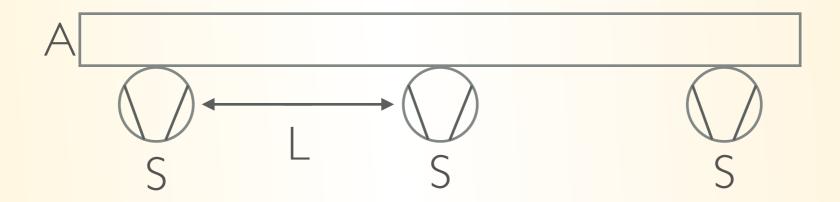
MOLFLOW SEMINAR

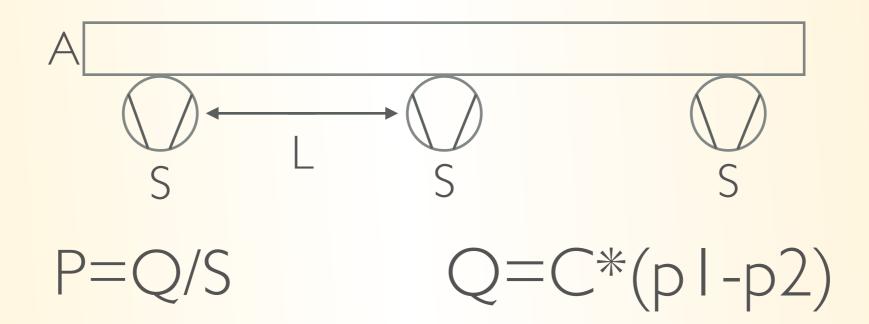
Monte Carlo simulation of ultra high vacuum systems



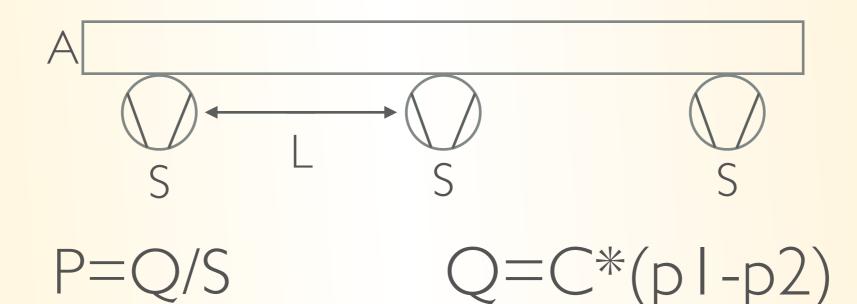
VACUUM CALCULATIONS: ANALYTICAL METHOD



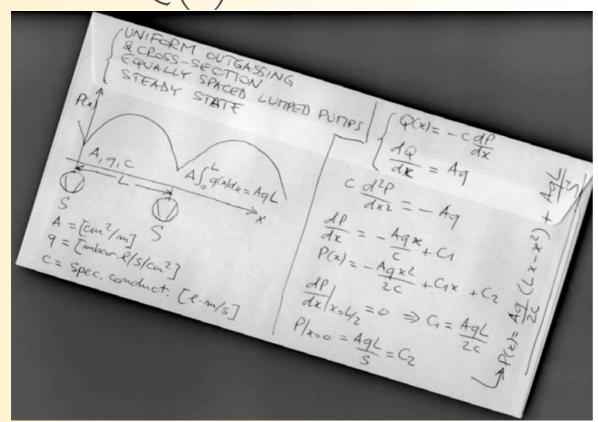
VACUUM CALCULATIONS: ANALYTICAL METHOD

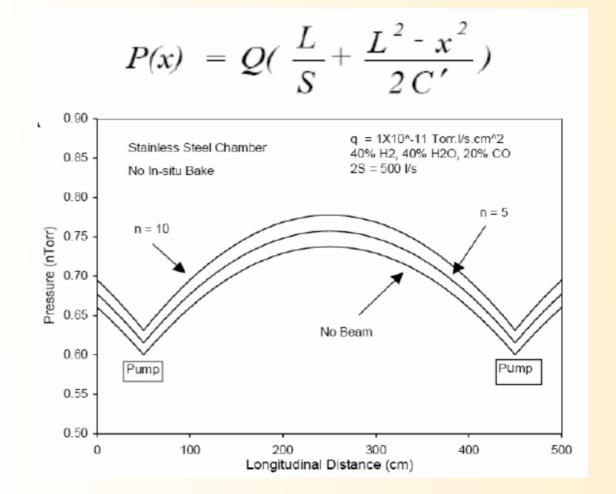


VACUUM CALCULATIONS: ANALYTICAL METHOD



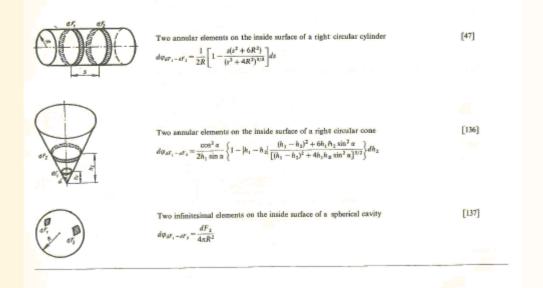
$$Q(x) = -C*dP/dx$$

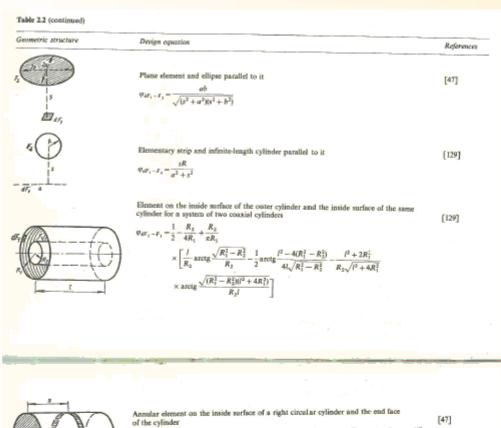


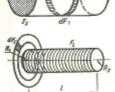


DIFFICULTY: CONDUCTANCE

eometric structure	Design equation	References
no all ar	I. Two infinitesimal elements	
1º /s	Two arbitrarily oriented elementary areas	[47]
3	$d\psi_{dF_1-dF_F} = \frac{\cos \alpha_1 \cos \alpha_2}{\pi s^2} dF_2$	199
7		
55/17		
Tally	Two strips of finite length and infinitesimal width with parallel generatrices	[47]
1 2	$d\varphi_{qF_1-qF_2} = \frac{1}{\pi} \cos \alpha \arctan \frac{\alpha}{s} dx$	
urq		
(1)	End-face element of a channel with a square cross section, located in a corner, and a channel surface element	[47]
	$d\phi_{dT_1-dT_2} = \frac{ag}{\pi(a^2 + s^2)^{5/2}} \left[\operatorname{arctg} \frac{a}{\sqrt{a^3 + s^2}} + \operatorname{arctg} \frac{a\sqrt{a^2 + s^2}}{s^3 + 2a^2} \right] ds$	



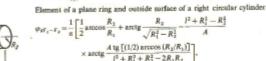


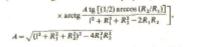


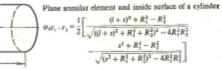
e cylinder
$$-F_2 = \frac{1}{2R} \left[\frac{s^2 + 2R^2}{\sqrt{s^2 + 4R^2}} - r \right] \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad \qquad \begin{cases} F_{f_2} = d_{f_2} = \frac{1}{R^2} \\ \frac{1}{\sqrt{s^2 + 4R^2}} - s \end{cases} \end{cases} \qquad$$

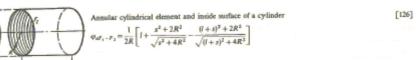
[137]

[126]







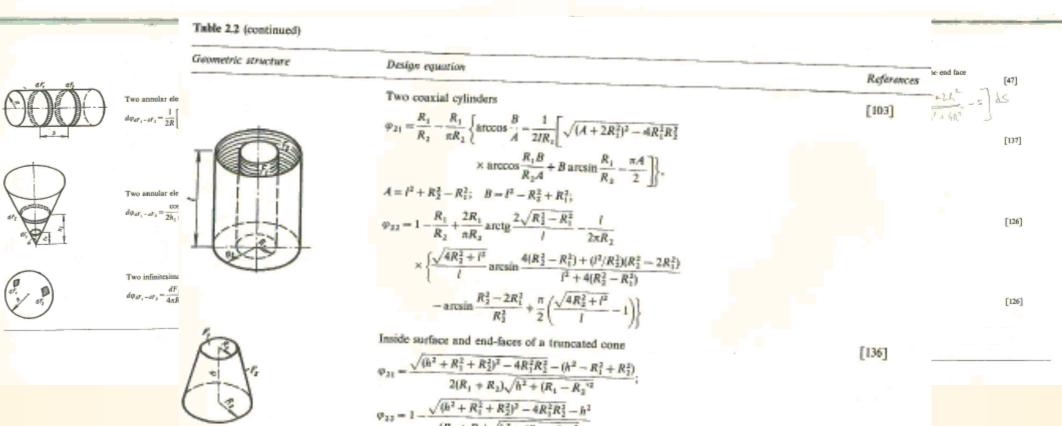


DIFFICULTY: CONDUCTANCE

ometric structure	Design equation	References
n_1 α_1 α_2	I. Two infinitesimal elements	
In. /s	Two arbitrarily oriented elementary areas	[47]
	$d\phi_{dF_1-dF_2} = \frac{\cos \alpha_1 \cos \alpha_2}{\pi s^2} dF_2$	Tip
4		
45 M		
2//		
TOMY	Two strips of finite length and infinitesimal width with parallel generatrices	[47]
18	$d\varphi_{aF_1-aF_2} = \frac{1}{\pi} \cos \alpha \operatorname{aretg} \frac{\alpha}{s} dx$	
dF ₁		
	End-face element of a channel with a square cross section, located in a corner, and a channel surface element	[47]
	$d\phi_{dT_1-dT_2} = \frac{ag}{\pi(a^2 + s^2)^{5/2}} \left[arctg \frac{a}{\sqrt{a^2 + s^2}} + arctg \frac{a\sqrt{a^2 + s^2}}{s^2 + 2a^2} \right] ds$	[44]

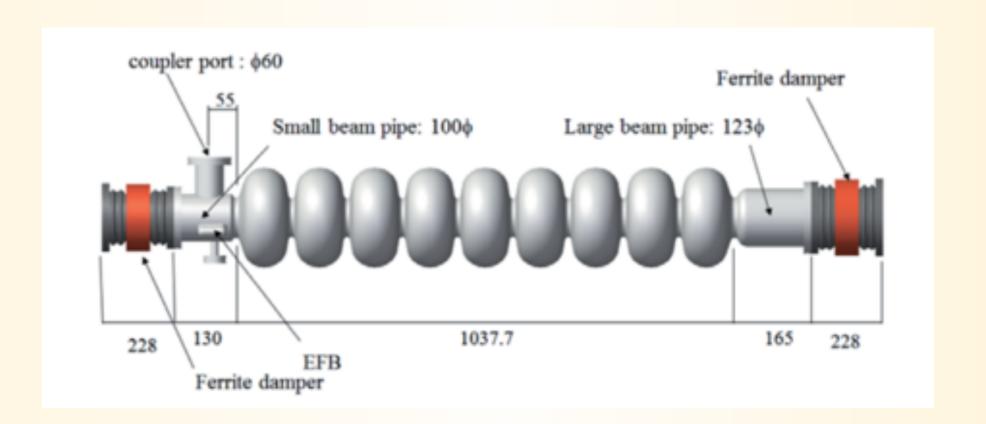
Geometric structure	Design equation	References
	Plane element and ellipse parallel to it $ \varphi_{dF_1-F_2} = \frac{\sigma b}{\sqrt{(s^2 + \alpha^2)(s^2 + b^2)}} $	[47]
£ 15,	Elementary strip and infinite-length cylinder parallel to it $\varphi_{dF_1-F_2}=\frac{zR}{a^2+s^2}$	[129]
	Element on the inside surface of the outer cylinder and the inside surface of the same cylinder for a system of two coaxial cylinders $\nabla_{dF_1} - F_1 = \frac{1}{2} - \frac{R_2}{4R_1} + \frac{R_2}{\pi R_1}$	[129]
	$\times \left[\frac{1}{R_2} \operatorname{arctg} \frac{\sqrt{R_1^2 - R_2^2}}{R_2} - \frac{1}{2} \operatorname{arctg} \frac{l^2 - 4(R_1^2 - R_2^2)}{4l\sqrt{R_1^2 - R_2^2}} - \frac{l^2 + 2R_1^2}{R_2\sqrt{l^2 + 4R_1^2}} \right] \times \operatorname{arctg} \frac{\sqrt{(R_1^2 - R_2^2)(l^2 + 4R_1^2)}}{R_2l}$	

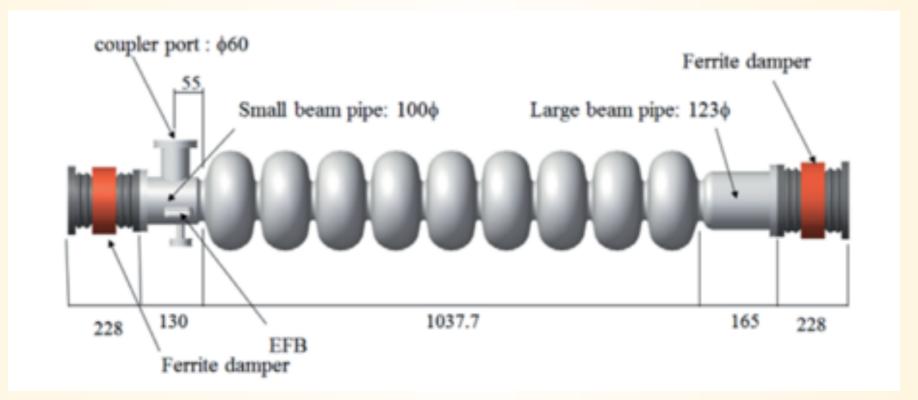
[47]

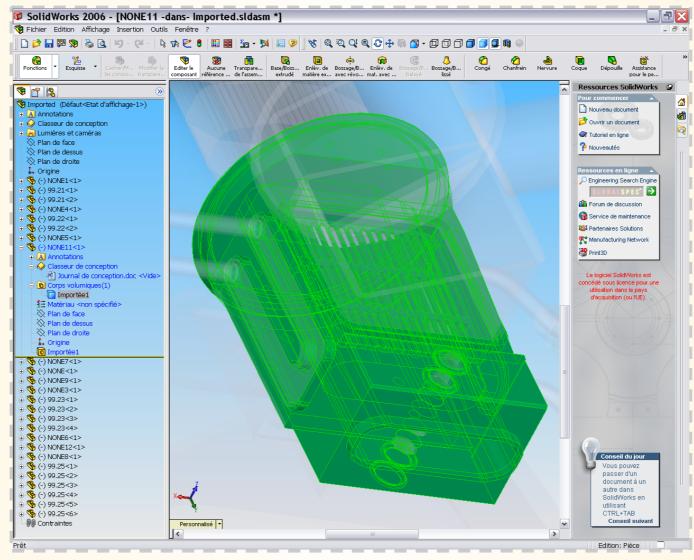


Two coaxial cylinders of infinite length

 $\varphi_{12} = 1; \quad \varphi_{2i} = \frac{R_1}{R_2}; \quad \varphi_{22} = 1 - \frac{R_2}{R_2}$

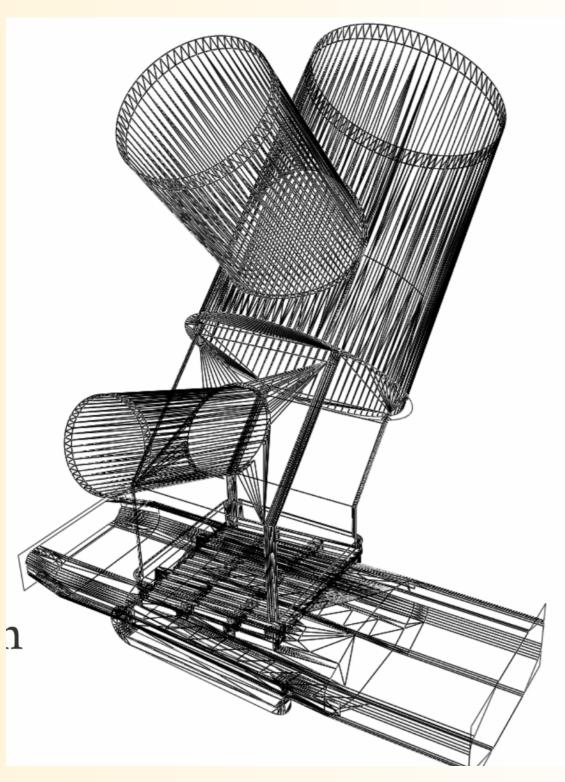






MC SIMULATIONS

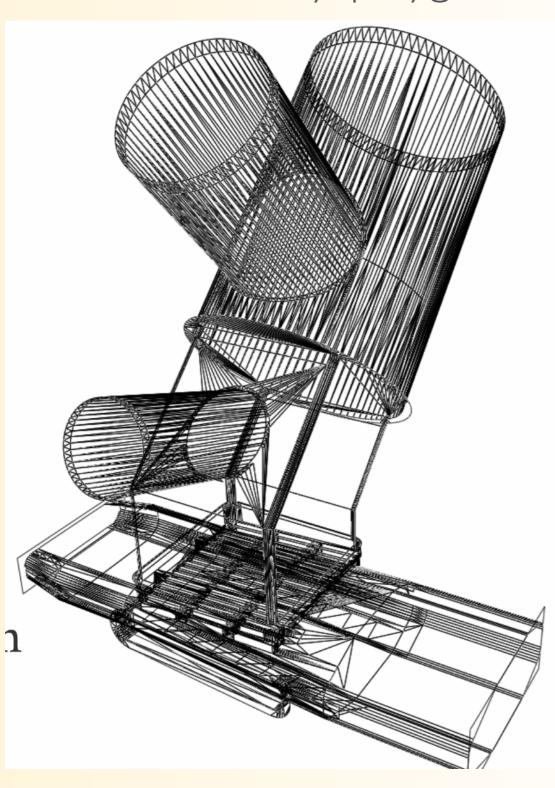
Geometry: polygons



MC SIMULATIONS

Geometry: polygons

Gas input:



pV=NkT

 $1 \text{ Pa*m}^3/\text{s} = 2.4*10^{20} \text{ molecules/s}$

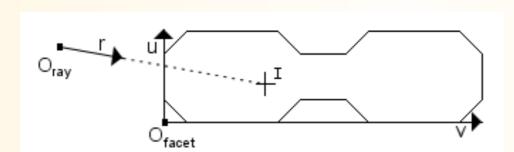
Virtual / Physical particle ratio

Ray tracing

Ray-plane intersection:

- Use Cramer's rule to find I coordinates.
- $\vec{w} = \vec{u} \wedge \vec{v}$ is pre-calculated once for each facet.

- Faster to solve I_u and I_v first (best elimination method than solving distance I_r first).



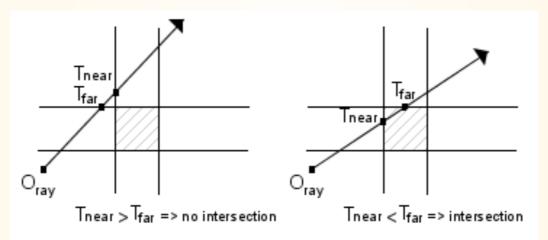
$$I_{u} = \frac{(\overrightarrow{O_{fr}} \wedge \overrightarrow{v}).\overrightarrow{r}}{\overset{\rightarrow}{w.r}} \in [0,1]$$

$$I_{v} = \frac{(\overrightarrow{u} \wedge \overrightarrow{O_{fr}}) \overrightarrow{r}}{\overrightarrow{w.r}} \in [0,1]$$

$$I_{r} = -\frac{\overrightarrow{w.O_{fr}}}{\overrightarrow{w.o_{fr}}} > 0$$

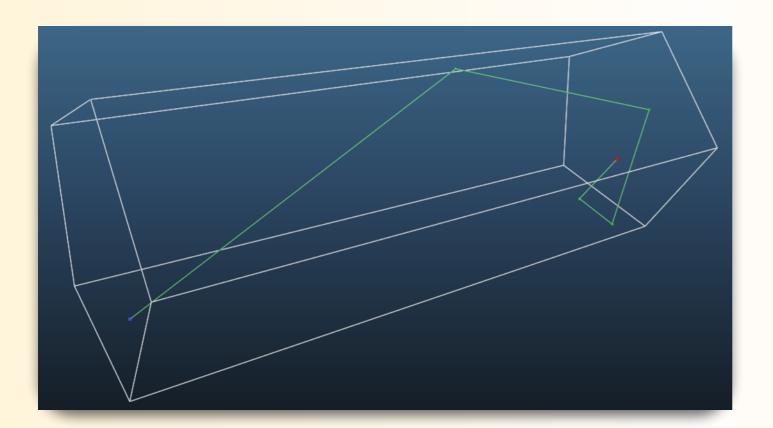
AABB Tree optimisation:

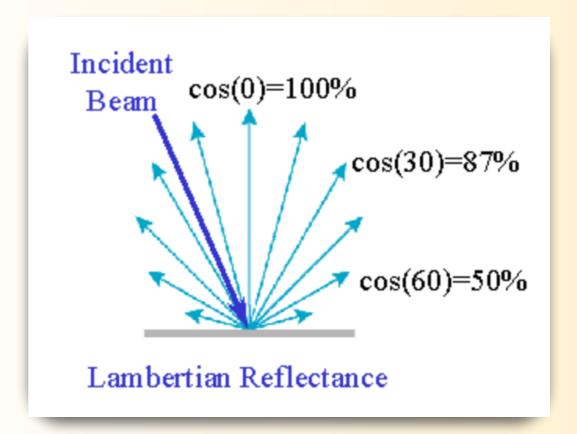
- Use of "Axis Aligned Bounding Box" tree structure to speed collision detection
- Box/ray intersection performed using the "slabs method"



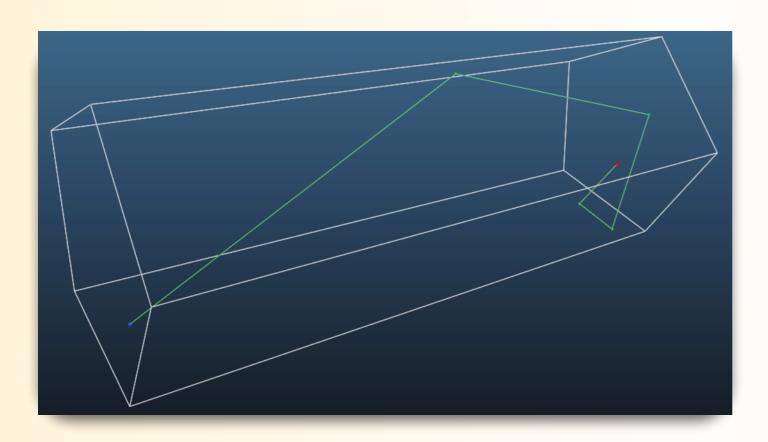
- Minimum of 8 facets per box and maximum tree depth of 5 (using "best axis" method for AABB tree balancing)
- Result: more than 5 times faster for complex geometries

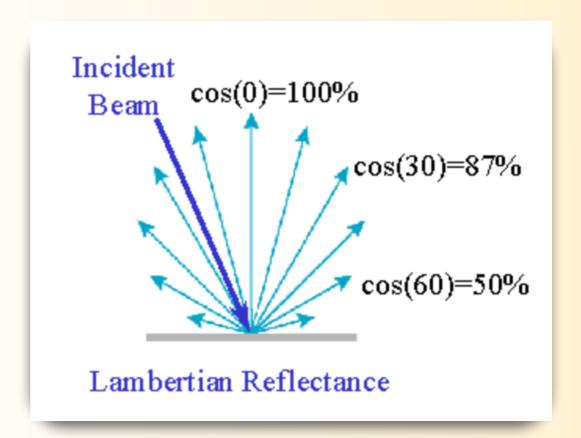
Reflection





Reflection

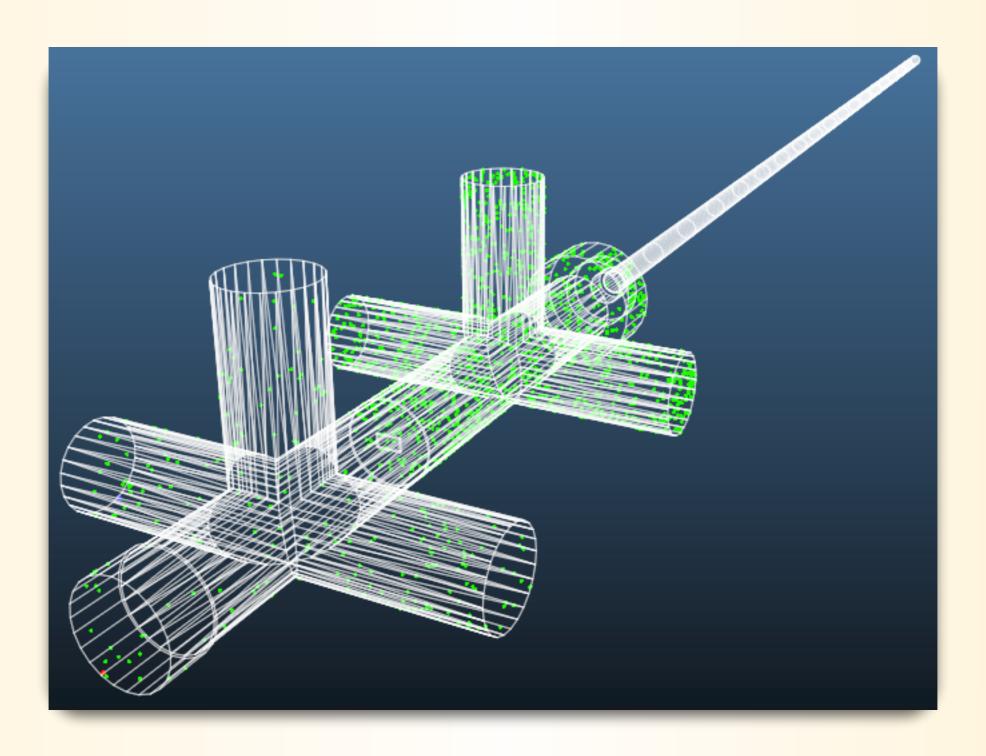




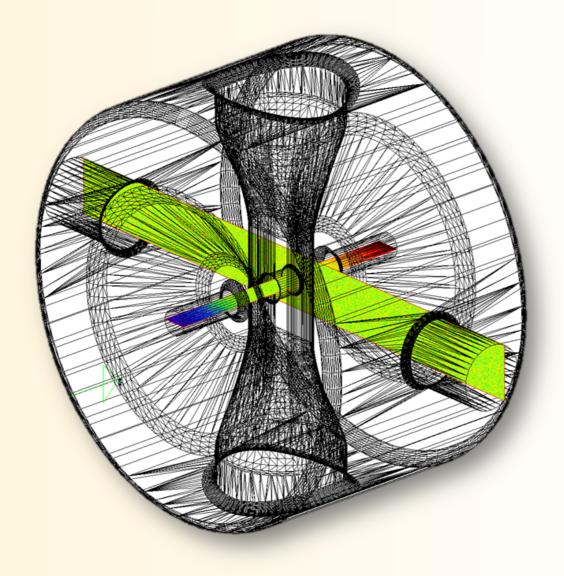
Pumping / absorption

$$S[m^3/s] = sticking[0..1] * 1/4 * A[m^2] * vavg[m/s]$$

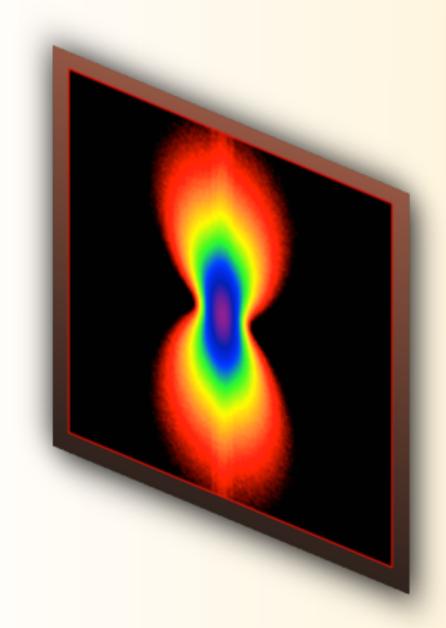
Collecting statistics



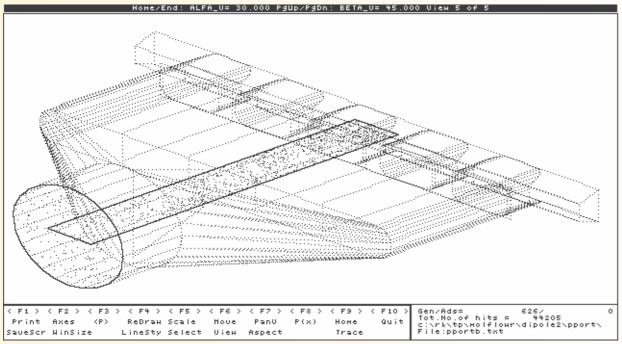
MolFlow

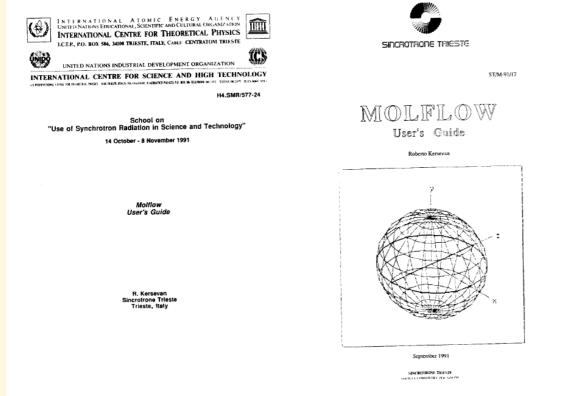


SynRad



Molflow (1990)



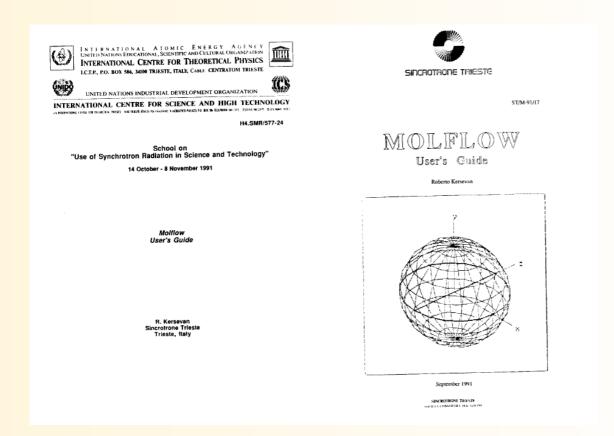


Roberto Kersevan



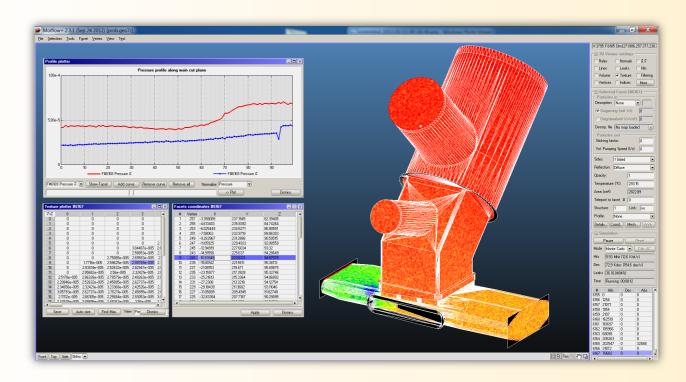
Molflow (1990)

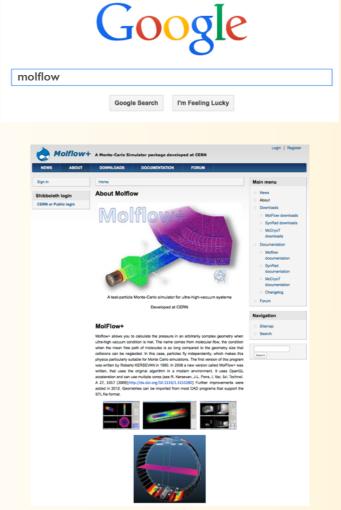
HOME/End: ALFA_U= 30.000 PSUp/FSDn: BETA_U= 45.000 Utem 5 of 5 (F1) < F2 > (F3 > (F4 > (F5 > (F6 > (F7 > (F8 > (F3 > (F10 > (F1



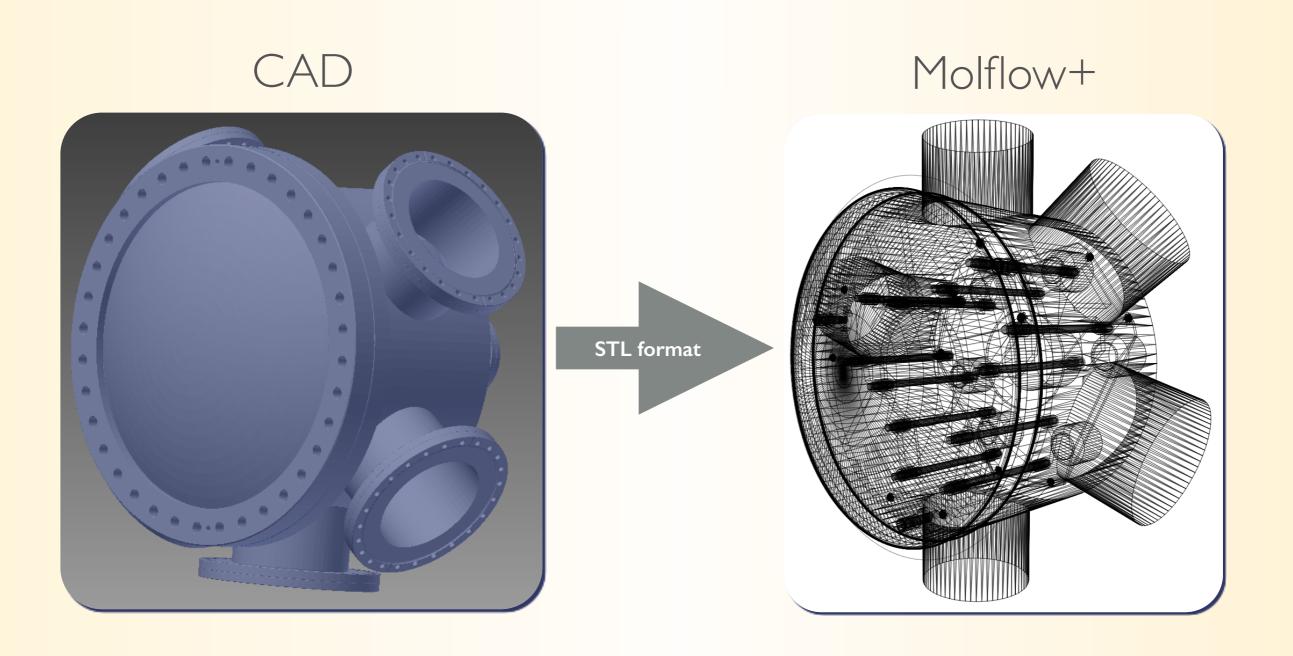
Roberto Kersevan

Molflow+ (2008-)





Step 1: creating geometry



Step 2: adding physics

